skip to main content


Search for: All records

Creators/Authors contains: "Du, Jing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In the realm of robotics and automation, robot teleoperation, which facilitates human–machine interaction in distant or hazardous settings, has surged in significance. A persistent issue in this domain is the delays between command issuance and action execution, causing negative repercussions on operator situational awareness, performance, and cognitive load. These delays, particularly in long-distance operations, are difficult to mitigate even with the most advanced computing advancements. Current solutions mainly revolve around machine-based adjustments to combat these delays. However, a notable lacuna remains in harnessing human perceptions for an enhanced subjective teleoperation experience. This paper introduces a novel approach of sensory manipulation for induced human adaptation in delayed teleoperation. Drawing from motor learning and rehabilitation principles, it is posited that strategic sensory manipulation, via altered sensory stimuli, can mitigate the subjective feeling of these delays. The focus is not on introducing new skills or adapting to novel conditions; rather, it leverages prior motor coordination experience in the context of delays. The objective is to reduce the need for extensive training or sophisticated automation designs. A human-centered experiment involving 41 participants was conducted to examine the effects of modified haptic cues in teleoperations with delays. These cues were generated from high-fidelity physics engines using parameters from robot-end sensors or physics engine simulations. The results underscored several benefits, notably the considerable reduction in task time and enhanced user perceptions about visual delays. Real-time haptic feedback, or the anchoring method, emerged as a significant contributor to these benefits, showcasing reduced cognitive load, bolstered self-confidence, and minimized frustration. Beyond the prevalent methods of automation design and training, this research underscores induced human adaptation as a pivotal avenue in robot teleoperation. It seeks to enhance teleoperation efficacy through rapid human adaptation, offering insights beyond just optimizing robotic systems for delay compensations.

     
    more » « less
  2. Free, publicly-accessible full text available October 1, 2024
  3. Free, publicly-accessible full text available September 1, 2024
  4. Abstract

    This work presents an approach for automating the discretization and approximation procedures in constructing digital representations of composites from micro-CT images featuring intricate microstructures. The proposed method is guided by the Support Vector Machine (SVM) classification, offering an effective approach for discretizing microstructural images. An SVM soft margin training process is introduced as a classification of heterogeneous material points, and image segmentation is accomplished by identifying support vectors through a local regularized optimization problem. In addition, an Interface-Modified Reproducing Kernel Particle Method (IM-RKPM) is proposed for appropriate approximations of weak discontinuities across material interfaces. The proposed method modifies the smooth kernel functions with a regularized Heaviside function concerning the material interfaces to alleviate Gibb's oscillations. This IM-RKPM is formulated without introducing duplicated degrees of freedom associated with the interface nodes commonly needed in the conventional treatments of weak discontinuities in the meshfree methods. Moreover, IM-RKPM can be implemented with various domain integration techniques, such as Stabilized Conforming Nodal Integration (SCNI). The extension of the proposed method to 3-dimension is straightforward, and the effectiveness of the proposed method is validated through the image-based modeling of polymer-ceramic composite microstructures.

     
    more » « less
  5. Free, publicly-accessible full text available August 8, 2024
  6. Free, publicly-accessible full text available July 1, 2024
  7. Free, publicly-accessible full text available May 1, 2024
  8. Background

    In Physical Human–Robot Interaction (pHRI), the need to learn the robot’s motor-control dynamics is associated with increased cognitive load. Eye-tracking metrics can help understand the dynamics of fluctuating mental workload over the course of learning.

    Objective

    The aim of this study was to test eye-tracking measures’ sensitivity and reliability to variations in task difficulty, as well as their performance-prediction capability, in physical human–robot collaboration tasks involving an industrial robot for object comanipulation.

    Methods

    Participants (9M, 9F) learned to coperform a virtual pick-and-place task with a bimanual robot over multiple trials. Joint stiffness of the robot was manipulated to increase motor-coordination demands. The psychometric properties of eye-tracking measures and their ability to predict performance was investigated.

    Results

    Stationary Gaze Entropy and pupil diameter were the most reliable and sensitive measures of workload associated with changes in task difficulty and learning. Increased task difficulty was more likely to result in a robot-monitoring strategy. Eye-tracking measures were able to predict the occurrence of success or failure in each trial with 70% sensitivity and 71% accuracy.

    Conclusion

    The sensitivity and reliability of eye-tracking measures was acceptable, although values were lower than those observed in cognitive domains. Measures of gaze behaviors indicative of visual monitoring strategies were most sensitive to task difficulty manipulations, and should be explored further for the pHRI domain where motor-control and internal-model formation will likely be strong contributors to workload.

    Application

    Future collaborative robots can adapt to human cognitive state and skill-level measured using eye-tracking measures of workload and visual attention.

     
    more » « less